Параметры резания при фрезеровании. Формулы и определения для фрезерования. Параметры режима резания

Одним из способов отделки материалов является фрезерование. Оно используется для обработки металлических и неметаллических заготовок. Рабочий процесс контролируется с помощью режимов резания.

Суть процесса

Фрезерование осуществляется с целью глубокой черновой и чистовой обработки, формирования определённого профиля поверхности (пазы, канавки), нарезания зубьев на зубчатых колесах, корректировки формы, художественного вытачивания узоров и надписей.

Рабочий инструмент - фреза - совершает главное вращающее движение. Вспомогательным является поступательная подача заготовки относительно ее хода. Этот процесс имеет прерывистый характер. Его важнейшая особенность, которая отличает от точения и сверления - тот факт, что каждый зуб работает отдельно. В связи с этим, для него характерно наличие ударных нагрузок. Уменьшить их влияние возможно с учетом рациональной оценки ситуации и подбора режимов.

Основные понятия о работе фрезерных станков

В зависимости от способа расположения шпинделя и крепления фрезы в нем, от видов осуществляемых действий и от способов управления, выделяют основные типы фрезеровального оборудования:

  • горизонтальные;
  • вертикальные;
  • универсальные;
  • фрезерные станки с ЧПУ.

Основные узлы вертикально-фрезерного станка:

  1. Станина, в которой размещается коробка скоростей, регулирующая вращение вертикально установленного шпинделя и закрепленной на нем фрезы.
  2. Стол, включающий в себя консоль с поперечными полозками для крепления и перемещения заготовки и коробку подач, регулирующую движения подачи.

В горизонтально-фрезерных станках инструмент закрепляется горизонтально. А универсальные имеют несколько разновидностей.

Существует универсальное горизонтальное оборудование, для которого характерно наличие оборотности стола и, тем самым, расширение спектра возможных выполняемых работ. Кроме того, имеется широкоуниверсальное, имеющее в своем строении оба шпинделя и позволяющее осуществлять все виды фрезерования.

С ЧПУ отличаются наличием программного обеспечения и компьютерного управления. Они предназначены для художественной обработки заготовок, в том числе в 3D-формате.

Классификация фрез

Фрезы - это приспособления для резания. Основные физические параметры, с помощью которых они оцениваются: высота, диаметр, величины фаски и затылования, окружной шаг. Существует их огромное разнообразие, распределяющиеся по различным признакам:

  • по типу поверхностей, которые обрабатываются (для дерева, пластика, стали, цветных металлов и др);
  • по направлению движения вращения - праворежущие и леворежущие;
  • в зависимости от конструкционных особенностей - цельные, напайные, складные (имеют вставные ножи), сварные;
  • по форме: конические, цилиндрические, дисковые;
  • в зависимости от условий работы и требований к режущей части, могут изготавливаться из различных материалов. К ним относятся: углеродистая инструментальная и быстрорежущая сталь (легированная, с повышенным содержанием вольфрама), твердый сплав (прочный - для черновой обработки, износостойкий - для чистовой). Распространены варианты, когда корпус изготовлен из углеродистой или быстрорежущей стали, а ножи - вставные твердосплавные;
  • в зависимости от назначения: цилиндрические, торцевые, концевые, прорезные, отрезные, фасонные.

Наиболее информативные признаки: материал режущей кромки и назначение.

Виды фрез для плоских поверхностей

С целью снятия слоев материала на горизонтальных, вертикальных или наклонных плоскостях, используются цилиндрические и торцевые фрезы.

Инструмент первого вида может быть цельным либо с насадными ножами. Большие цельные фрезеровальные насадки предназначены для черновой обработки, а малые - для чистовой. Вставные ножи для складных режущих головок могут быть изготовлены из быстрорежущей стали либо оборудованы пластинками из твердых сплавов. Твердосплавные фрезы имеют большую производительность работы, чем сделанные из легированного стального сплава.

Торцевая применяется для удлиненных плоскостей, ее зубья распределяются на торцевой поверхности. Большие складные используются для широких плоскостей. Кстати, для снятия стружки со сложно обрабатываемых тугоплавких металлов обязательно наличие твердосплавных ножей. Для применения этих групп фрезеровальных приспособлений нужна значительная ширина и длина изделия.

Виды инструментов для художественного фрезерования

Для придания материалу определенного профиля, нанесения узора, формирования нешироких углублений применяются концевые и дисковые фрезеровальные насадки.

Концевая или распространена для вырезания пазов, узких и криволинейных плоскостей. Все они - цельные или сварные, режущая часть из быстрорежущей легированной стали, может быть наплавлен твердосплав, а корпус сделан из углеродистой стали. Существуют малозаходные (1-3 спирали) и многозаходные (4 и больше). Используются для станков с ЧПУ.

Дисковая - это также фреза пазовая. Она применима для канавок, пазов, нарезания зубов на зубчатых колесах.

Художественное фрезерование осуществляется на древесине, металле, ПВХ.

Виды фрез для обработки кромок

Снятие стружки с углов, придание им рациональной формы, моделирование, разделение заготовки на части можно реализовывать с помощью шлицевых, угловых и фасонных фрезеровальных насадок:

  1. Отрезная и шлицевая имеет то же назначение, что и дисковая, однако чаще используются для надрезов и отделения лишних частей материала.
  2. Угловая необходима для кромок деталей и углов. Существуют одноугловые (лишь одна режущая часть) и двухугловые (режущими являются обе конические поверхности).
  3. Фасонная используется для сложных конструкций. Может быть полукруглой или вогнутой. Часто применяется для нарезания профиля метчиков, зенкеров,

Практически для всех типов возможна цельная стальная конструкция либо складная, с наличием вставных твердосплавных ножей. Твердосплавные фрезы имеют качественно более высокие показатели работы и ее продолжительности для инструмента в целом.

Классификация видов фрезерования

Существует несколько классификационных признаков, по которым разделяют виды фрезерования:

  • по способу расположения шпинделя и фрезы, соответственно, на горизонтальное и вертикальное;
  • по направлению движения, на встречное и попутное;
  • в зависимости от используемого инструмента, на цилиндрическое, торцевое, фасонное, концевое.

Цилиндрическая обработка применима для горизонтальных плоскостей, осуществляется с помощью соответствующих фрез на горизонтальных станках.

Концевая отделка обеспечивает формирование необходимого профиля криволинейным канавкам, сверлам и приборам.

Фасонная обработка осуществляется для поверхностей со сложной конфигурацией: углов, кромок, пазов, нарезания зубьев для зубчатых колес.

Вне зависимости от вида осуществляемых работ и обрабатываемых материалов, результат должен отличаться высокой гладкостью финишного слоя, отсутствием зазубрин, точностью отделки. С целью получения чистой обработанной поверхности важно контролировать величины подач заготовки по отношению к инструменту.

Встречное и попутное фрезерование

Когда выполняется фрезерование металла встречного типа - заготовка подается навстречу вращательным движениям насадки. При этом зубья постепенно врезаются в обрабатываемый метал, нагрузка увеличивается прямопропорционально и равномерно. Однако перед врезанием зуба в деталь, он некоторое время скользит, образовывая наклеп. Это явление ускоряет выход фрезы из рабочего состояния. Используется при черновой обработке.

При выполнении попутного типа - заготовка подается по ходу вращательных движений инструмента. Зубья работают ударно под большими на 10% ниже, чем при встречном фрезеровании. Осуществляется при чистовой обработке деталей.

Основные понятие о фрезерных работах на станках с ЧПУ

Они характеризуются высокой степенью автоматизации, точностью рабочего процесса, высокой продуктивностью. Фрезерование на станке с ЧПУ осуществляется чаще всего с помощью торцевых или концевых фрез.

Последние - наиболее широко используемые. При этом, в зависимости от обрабатываемого материала, соответствующего типа образующей стружки, заданных параметров программного обеспечения, используются разные концевые фрезы. Они классифицируются по числу заходов спиралей, которые обеспечивают наличие режущих кромок и канавный отвод стружки.

Материалы с широкой стружкой целесообразно фрезеровать с помощью инструментов малого количества заходов. Для твердых металлов с характерной стружкой излома необходимо выбирать фрезеровальные приспособления с большим количеством спиралей.

Использование фрез для станков с ЧПУ

Малозаходные фрезы для ЧПУ могут иметь от одной до трех режущих кромок. Они используются для дерева, пластмассы, композитов и мягких податливых металлов, требующих быстрого отвода широкой стружки. Применяются для черновой обработки заготовок, к которым не ставятся высокие требования. Для данного инструмента характрена небольшая производительность, невысокая жесткость.

С помощью однозаходных осуществляется художественное фрезерование алюминия.

Широко используемыми являются двух- и трехзаходные концевые. Они обеспечивают жесткость более высоких значений, качественный отвод стружки, позволяют работать с металлами средней твердости (например, со сталью).

Многозаходные фрезы для ЧПУ имеют более 4-х режущих кромок. Применяются для металлов средней и высокой твердости, для которых характерна мелкая стружка и высокое сопротивление. Им свойствена значительная производительность, они актуальны для чистовой и получистовой обработки и не рассчитаны на работу с мягкими материалами.

С целью правильного выбора инструмента для станков с ЧПУ важно учитывать режим резания при фрезеровании, а также все характеристики обрабатываемой поверхности.

Режимы резания

Для обеспечения нужного качества фрезерованного слоя важно правильно определить и поддерживать необходимые технические параметры. Основными показателями, описывающими и регулирующими фрезеровочный процесс, являются режимы работы.

Расчет при фрезеровании производится с учетом основных элементов:

  1. Глубина (t, мм) - толщина металлического шара, который снимается за один рабочих ход. Выбирают ее с учетом припуска на обработку. Черновые работы осуществляются за один проход. Если припуск составляет более 5 мм, то фрезерование проводят в несколько проходов, при этом на последний оставляют около 1 мм.
  2. Ширина (B, мм) - ширина обрабатываемой поверхности в направлении, перпендикулярном движению подачи.
  3. Подача (S) - длина перемещения заготовки относительно оси инструмента.

Выделяют несколько взаимосвязанных понятий:

  • Подача на один зуб (S z , мм/зуб) - изменение положения детали при повороте фрезы на расстояние от одного рабочего зуба к следующему.
  • Подача на один оборот (S об, мм/об) - перемещение конструкции при одном полном обороте фрезеровальной насадки.
  • Подача за одну минуту (S мин, мм/мин) - важный режим резания при фрезеровании.

Их взаимосвязь устанавливается математематически:

S мин =S об *n= S z *z*n,

где z - количество зубьев;

n - частота вращения шпинделя, мин -1 .

На величину подачи также влияют физические и технологические свойства обрабатываемой площади, прочность инструмента и рабочие характеристики механизма подач.

Расчет скорости резания

В качестве номинального расчетного параметра принимают степень быстрого оборота шпинделя. Фактическая скорость V, м/мин зависит от диаметра фрезы и частоты ее вращающихся движений:

Частота вращения фрезерного инструмента определяется:

n=(1000*V)/(π*D)

Имея информацию о минутной подаче, можно определить необходимое время для заготовки c длиной L:

Расчет режимов резания при фрезеровании и их установку актуально осуществлять перед наладкой станка. Установление рациональных заданных параметров, с учетом характеристик инструмента и материала детали, обеспечивает высокую продуктивность работ.

Невозможно идеально подобрать режим резания при фрезеровании, однако можно руководствоваться основными принципами:

  1. Желательно, чтобы диаметр фрезы соответствовал глубине обработки. Это обеспечит очищение поверхности за один проход. Тут основной фактор - материал. Для слишком мягких этот принцип не действует - существует риск снятия стружки, толщиной большей, чем необходимо.
  2. Ударные процессы и вибрации неминуемы. В связи с этим, увеличение значений подачи ведет к снижению скорости. Оптимально начинать работу с подачи на зуб, равной 0,15 мм/зуб, а в процессе - регулировать.
  3. Частота вращения инструмента не должна быть максимально возможной. В противном случае существует риск снижения скорости резания. Ее повышение возможно с увеличением диаметра фрезы.
  4. Увеличение длины рабочей части фрезы, предпочтение большого количества зубьев понижают производительность и качество обработки.
  5. Ориентировочные значения скоростей для различных материалов:
  • алюминий - 200-400 м/мин;
  • бронза - 90-150 м/мин;
  • нержавеющая сталь - 50-100 м/мин;
  • пластмассы - 100-200 м/мин.

Лучше начинать со средней скоростью, а в процессе корректировать ее в меньшую или большую сторону.

Режим резания при фрезеровании важно определять не только математически или с помощью специальных таблиц. Для правильного выбора и установки оптимальных параметров для станка и нужного инструмента необходимо оперировать некоторыми особенностями и личным опытом.

Неправильно подобранный режим резания зачастую приводит к поломке инструмента, порче материала, к повышенной нагрузке на шпиндель. В статье вы узнаете о том, как оптимизировать свою работу и увеличить ресурс режущего инструмента.

Простые методы повышения эффективности работы на фрезерном станке

  1. Фрезерной обработке на лучше всего подвергать пластики полученные литьем, т.к. у них более высокая температура плавления.
  2. При резке акрила и алюминия желательно для охлаждения инструмента использовать СОЖ. В качестве СОЖ может выступать обыкновенная вода или универсальная смазка WD-40.
  3. При резке акрила, когда подсаживается (притупляется) фреза, необходимо понизить обороты до момента пока не пойдет колкая стружка. Осторожнее с подачей - при низких оборотах шпинделя вырастает нагрузка на инструмент и соответственно вероятность его поломки.
  4. Для фрезеровки пластиков и мягких металлов, наиболее подходящими являются однозаходные фрезы (желательно с полированной канавкой для отвода стружки). При использовании однозаходных фрез создаются оптимальные условия для отвода стружки, а следовательно и отвода тепла из зоны резания.
  5. При фрезеровке рекомендуется применять такую стратегию обработки, при которой идет беспрерывный съем материала со стабильной нагрузкой на инструмент.
  6. При фрезеровке пластиков, для улучшения качества реза, рекомендуется использовать встречное фрезерование.
  7. Для получения приемлемой шероховатости обрабатываемой поверхности, шаг между проходами фрезы/гравера необходимо делать равным или меньше рабочего диаметра фрезы(d)/пятна контакта гравера (T).
  8. Для улучшения качества обрабатываемой поверхности желательно не обрабатывать заготовку на всю глубину сразу, а оставить небольшой припуск на чистовую обработку.
  9. При резке мелких элементов необходимо снизить скорость резания, чтобы вырезанные элементы не откалывались в процессе обработки и не повреждались.

Режимы резания, используемые на практике, в зависимости от обрабатываемого материала и типа фрезы

Приведенная ниже таблица содержит справочную информацию параметров режима резания, взятых из практики. От этих режимов рекомендуется отталкиваться при обработке различных материалов со схожими свойствами, но не обязательно строго придерживаться их.

Необходимо учитывать, что на выбор режимов резания, при обработке одного и того же материала одним и тем же инструментом, влияет множество факторов, основными из которых являются: жесткость системы «Станок – Приспособление – Инструмент – Деталь», охлаждение инструмента, стратегия обработки, высота слоя снимаемого за проход и размер обрабатываемых элементов.

Обрабатываемый материал

Тип работы

Тип фрезы

Частота, об/мин

Подача (XY), мм/сек

Подача (Z), мм/сек

Примечание

Акрил

V-гравировка

По 5 мм за проход.

Встречное фрезерование.

Не более 3 мм за проход.

Желательно использовать СОЖ.

ПВХ до 10 мм

Фреза спиральная 1-заходная d=3.175 мм или 6 мм

Встречное фрезерование.

Двухслойный пластик

Гравировка

Конический гравер, плоский гравер

По 0.3-0,5 мм за проход.

Композит

Фреза спиральная 1-заходная d=3.175 мм или 6 мм

Встречное фрезерование.

Дерево

Фреза спиральная 1-заходная d=3.175 мм или 6 мм

Встречное фрезерование.

По 5 мм за проход (подбирать, чтобы не обугливалось при резке поперек слоев).

Не более 10 мм за проход.

Гравировка

Фреза спиральная 2-заходная круглая d=3.175 мм

Не более 5 мм за проход.

Конический гравер d=3.175 мм или 6 мм

Не более 5 мм за проход (в зависимости от угла заточки и пятна контакта).

Шаг не более 50% от пятна контакта (T).

V-гравировка

V-образный гравер d=32 мм., A=90, 60 град., T=0.2 мм

Не более 3 мм за проход.

Фреза спиральная 1-заходная с удалением стружки вниз d=6 мм

Не более 10 мм за проход.

При выборке шаг не более 45% от d.

Фреза спиральная 2-заходная компрессионная d=6 мм

Не более 10 мм за проход.

Латунь

Бронза

БрАЖ

фрезеровка

Фреза спиральная 2-заходная d=2 мм

По 0,5 мм за проход.

Желательно использовать СОЖ.

Гравировка

По 0.3 мм за проход.

Шаг не более 50% от пятна контакта (T).

Желательно использовать СОЖ.

Дюралюминий, Д16, АД31

фрезеровка

Фреза спиральная 1-заходная d=3.175 мм или 6 мм

По 0,2-0,5 мм за проход.

Желательно использовать СОЖ.

Магний

Гравировка

Конический гравер A=90, 60, 45, 30 град.

По 0,5 мм за проход.

Шаг не более 50% от пятна контакта (T).

ЭЛЕМЕНТАРНЫЕ ПОНЯТИЯ О ТЕОРИИ РЕЗАНИЯ

§ 10. ЭЛЕМЕНТЫ РЕЗАНИЯ ПРИ ФРЕЗЕРОВАНИИ

В процессе фрезерования зубья фрезы при ее вращении последовательно один за другим врезаются в надвигающуюся заготовку и снимают стружку, осуществляя резание.
Элементами резания при фрезеровании являются ширина фрезерования, глубина фрезерования, скорость резания и подача.

Ширина и глубина фрезерования

Шириной фрезерования называют ширину обрабатываемой поверхности в миллиметрах (рис. 52). Ширина фрезерования обозначается через В.


Глубиной резания при фрезеровании, или глубиной фрезерования , или часто глубиной срезаемого слоя, называют толщину (в миллиметрах) слоя металла, снимаемого с поверхности заготовки фрезой за один проход, как это показано на рис. 52. Глубина фрезерования обозначается через t. Глубина фрезерования измеряется как расстояние между обрабатываемой и обработанной поверхностями.
Весь слой металла, который необходимо удалить при фрезеровании, называется, как указывалось выше, припуском на обработку. Глубина фрезерования зависит от припуска на обработку и мощности станка. Если припуск велик, обработку производят в несколько переходов. При этом последний переход производят с небольшой глубиной резания для получения более чистой поверхности обработки. Такой переход называют чистовым фрезерованием в отличие от чернового, или предварительного фрезерования, которое производят с большей глубиной фрезерования. При небольшом припуске на обработку фрезерование производят обычно с одного прохода.

На рис. 53 показана ширина В и глубина фрезерования t при обработке основными видами фрез.

Скорость резания

Главным движением при фрезеровании является вращение фрезы. В процессе фрезерования фреза вращается с определенным числом оборотов, которое устанавливается при настройке станка; однако для характеристики вращения фрезы принимают не число ее оборотов, а так называемую скорость резания.
Скоростью резания при фрезеровании называют путь, который проходят в одну минуту наиболее отдаленные от оси точки режущей кромки зуба фрезы. Скорость резания обозначается через υ.
Обозначим диаметр фрезы через D и предположим, что фреза делает один оборот в минуту. В этом случае режущая кромка зуба фрезы пройдет в минуту путь, равный длине окружности диаметра D мм , т. е. πD миллиметров. В действительности фреза делает больше одного оборота в минуту. Предположим, что фреза делает n оборотов в минуту, тогда режущая кромка каждого зуба фрезы пройдет в одну минуту путь, равный πDn мм . Следовательно, скорость резания при фрезеровании равна πDn мм/мин .
Обычно скорость резания при фрезеровании выражают в метрах в минуту, для чего необходимо полученное выражение скорости в мм/мин разделить на 1000. Тогда формула скорости резания при фрезеровании примет вид:

Из формулы (1) следует, что чем больше диаметр D фрезы, тем больше скорость резания при данном числе оборотов, и чем больше число оборотов n шпинделя, тем больше скорость резания при данном диаметре фрезы.

Пример 1 . Фреза диаметром 100 мм делает 140 об/мин. Определить скорость резания.
В данном случае D = 100 мм ; n = 140 об/мин . По формуле (1) имеем:

На производстве часто приходится решать обратную задачу: по заданной скорости резания υ определить число оборотов фрезы n или ее диаметр D .
Для этой цели применяют формулы:

Пример 2 . Обработку предложено производить при скорости резания 33 м/мин . Фреза имеет диаметр 100 мм . Сколько оборотов надо дать фрезе?
В данном случае υ = 33 м/мин ; D = 100 мм .
По формуле (2а) имеем:

или

Пример 3. Скорость резания составляет 33 м/мин . Число оборотов фрезы составляет 105 об/мин . Определить диаметр фрезы, которую надо применить для данной обработки.
В данном случае υ = 33 м/мин ; n = 105 об/мин .
По формуле (26) получаем:

или

Не всегда на станке можно установить число оборотов шпинделя в минуту, которое точно соответствует полученному по формуле (2а). Также не всегда удается подобрать фрезу точно того диаметра, (который получается по формуле (26). В этих случаях берут ближайшее меньшее число оборотов шпинделя в минуту из имеющихся на станке и фрезу с ближайшим меньшим диаметрам из имеющихся в кладовой.


Для определения числа оборотов шпинделя при заданной скорости резания и выбранном диаметре фрезы можно пользоваться графиками. На графике рис. 54 указаны располагаемые числа оборотов шпинделя консольно-фрезерных станков второго и третьего размеров (6М82, 6М82Г и 6М12П, 6М83, 6М83Г и 6М13П), изображенные в виде лучей, вследствие чего такие графики называют лучевыми диаграммами . На горизонтальной оси отложены диаметры фрез в мм , а по вертикальной оси - скорости резания в м/мин . Пользование графиком поясняется следующими примерами.
Пример 4 . Определить число оборотов шпинделя консольно-фрезерного станка 6М82Г при обработке стали цилиндрической фрезой из быстрорежущей стали диаметром 63 мм , если задана скорость резания υ = 27 м/мин .
По графику на рис. 54 от точки, соответствующей скорости резания 27 м/мин , проводим горизонтальную линию до пересечения с вертикальной линией, проведенной от точки, соответствующей диаметру фрезы 63 мм n = 125 и n = 160. Принимаем меньшее число оборотов n = 125 об/мин .
Пример 5 . Определить число оборотов шпинделя консольно-фрезерно-го станка 6М13П при обработке чугуна торцовой фрезой диаметром 160 мм , оснащенной твердым сплавом, если задана скорость резания υ = 90 м/мин .
По графику на рис. 54 от точки, соответствующей скорости резания 90 м/мин , проводим горизонтальную линию до пересечения с вертикальной линией, проведенной от точки, соответствующей диаметру фрезы в 160 мм . Искомое число оборотов шпинделя лежит между n = 160 и n = 200. Принимаем меньшее число оборотов n = 160 об/мин .
Такую лучевую диаграмму нетрудно вычертить самому для станка другой модели и размера.
Применение лучевой диаграммы упрощает подбор числа оборотов шпинделя станка и позволяет обходиться без применения формулы (2а).

Подача

Движение подачи при фрезеровании выполняется либо вручную, либо механизмом станка. Оно может быть осуществлено перемещением стола станка в продольном направлении, перемещением салазок в поперечном направлении и перемещением консоли в вертикальном направлении. У бесконсольных вертикально-фрезерных станков крестовой стол имеет продольное и поперечное перемещения, а вертикальное перемещение получает шпиндельная головка. При работе на продольно-фрезерных станках продольное перемещение имеет стол, а поперечные и вертикальные перемещения получают шпиндельные головки. При работе на круглом поворотном столе на вертикально-фрезерных станках, на карусельно- и барабанно-фрезерных станках имеет место круговая подача стола.
При фрезеровании различают:
подачу в одну минуту - перемещение стола в миллиметрах за 1 мин.; обозначается s и выражается в мм/мин ;
подачу на один оборот фрезы - перемещение стола в миллиметрах за полный оборот фрезы; обозначается s 0 и выражается в мм/об ;
подачу на один зуб фрезы - перемещение стола в миллиметpax за время, когда фреза повернется на часть оборота, соответствующую расстоянию от одного зуба до другого (на один шаг); обозначается s зy6 и выражается в мм/зуб . Часто подачу на один зуб фрезы обозначают s z .
На практике пользуются всеми тремя значениями подачи. Они связаны между собой простыми зависимостями:

(3) (4) (5)

где z - число зубьев фрезы.
Пример 6 . Фреза с 10 зубьями делает 200 об/мин при подаче 300 мм/мин . Определить подачу на один оборот фрезы и на один зуб.
В данном случае s = 300 мм/мин ; n =200 об/мин и z =10.

Подставляя известные величины, получаем:

Главное движение, или вращение фрезы, и движение подачи могут быть направлены навстречу друг другу - встречное фрезерование, называемое обычно фрезерованием против подачи , или в одном направлении - попутное фрезерование, называемое обычно фрезерованием по подаче .

Понятие о режиме резания при фрезеровании

Скорость резания, подача, глубина и ширина резания не могут выбираться произвольно фрезеровщиком по собственному усмотрению, так как это может вызвать преждевременное затупление фрезы, перегрузку и даже поломку отдельных узлов станка, нечистую поверхность обработки и т. д.
Все перечисленные выше элементы резания находятся в тесной зависимости друг от друга. Например, с увеличением скорости резания необходимо уменьшать подачу на зуб и снижать глубину резания, фрезерование с большой шириной резания требует уменьшения скорости резания и подачи, фрезерование с большой глубиной резания (черновую обработку) производят с меньшей скоростью резания, чем чистовую обработку, и т. д.
Кроме того, назначение скорости резания зависит от материала фрезы и материала заготовки. Фреза из быстрорежущей стали, как уже знаем, допускает большие скорости резания, чем из углеродистой стали; в свою очередь скорость резания для твердосплавной фрезы может быть в 4-5 раз выше, чем для быстрорежущей. Легкие сплавы можно фрезеровать со значительно большей скоростью резания, чем чугун. Чем тверже (крепче) стальная заготовка, тем меньше должна быть скорость резания.
Совокупность всех перечисленных выше элементов (скорость резания, подача, глубина и ширина фрезерования) в правиль-ном взаимном сочетании составляет режим резания при фрезеровании, или, сокращенно, режим фрезерования .
Наука о резании металлов установила рациональные скорости резания и подачи при заданных глубине резания и ширине фрезерования при обработке различных металлов и сплавов для углеродистых, быстрорежущих и твердосплавных фрез, поэтому назначение режима фрезерования производится на научном основании по соответствующим таблицам, так называемым нормативам режимов резания.

  • 2.2.1. Выбор конструкции фрезы.
  • 2.2.2. Выбор материала режущей части.
  • 2.2.3. Выбор типа и диаметра фрезы.
  • 2.2.4. Выбор геометрических параметров
  • 2.3. Выбор схемы фрезерования
  • 2.4. Назначение режима резания
  • 2.5. Проверка выбранного режима резания
  • 2.6. Расчёт времени выполнения операции и использования оборудования
  • 2.6.1. Основное время
  • 2.6.2 Вспомогательное время.
  • 2.6.3. Оперативное время.
  • 2.6.4. Время на обслуживание рабочего места и время на личные надобности
  • 2.6.5. Штучно - калькуляционное время
  • 2.6.6. Расчёт потребности в оборудовании.
  • 2.6.7. Технико-экономическая эффективность.
  • 3. Пример расчета режима резания
  • 3.1. Условия задачи.
  • 3.1.1 Исходные данные.
  • 3.1.2. Цель расчётов.
  • 3.2. Порядок расчета.
  • 3.2.1. Выбор режущего инструмента и оборудования.
  • 3.2.2. Расчёт элементов режима резания.
  • 3.2.2.1. Назначение глубины резания.
  • 3.2.2.2. Назначение подачи.
  • 3.2.2.3. Определение скорости резания.
  • 3.2.2.4. Уточнение режимов резания
  • 3.2.3. Проверка выбранного режима резания
  • 3.2.4. Расчёт времени выполнения операции.
  • 3.2.4.1. Расчёт основного времени.
  • 3.2.4.2. Определение штучного времени.
  • 3.2.4.3. Определение штучно-калькуляционного времени
  • 3.2.5. Определение технико - экономической эффективности
  • 3.2.5.1. Определение потребного количества станков
  • 3.2.5.2. Коэффициент основного вpемени
  • 3.2.5.3. Коэффициент использования мощности станка
  • Приложения
  • Стандартные торцовые фрезы
  • Фрезы торцовые с механическим креплением многогранных пластин (гост 26595-85)
  • Фрезы торцовые насадные со вставными ножами, оснащенными пластинами из твердого сплава (гост 24359-80)
  • Фрезы торцовые концевые и насадные с механическим креплением круглых твердосплавных пластин
  • Марки твёрдого сплава для торцовых фрез
  • Геометрические параметры режущей части торцовых фрез с пластинами из твердого сплава
  • Геометрические параметры режущей части торцовых фрез из быстрорежущей стали р18
  • 2. Задние углы a в град.
  • Подачи при черновом фрезеровании торцовыми фрезами с пластинами из твердого сплава
  • Подачи при черновом фрезеровании торцовыми фрезами из быстрорежущей стали
  • Подачи на оборот фрезы, мм/об, при чистовом фрезеровании: а. Торцовыми фрезами из быстрорежущей стали
  • Б. Торцовыми фрезами с пластинами из твердого сплава
  • Значения коэффициента Сv и показателей степени в формуле скорости резания при торцовом фрезеровании
  • Поправочный Кmv , учитывающий физико-механические свойства обрабатываемого материала.
  • Значения коэффициента Кг и показатели степени nv в формуле для рассчета коэффициента обрабатываемости Кmv
  • Поправочный коэффициент Кпv, зависимости скорости резания от состояние поверхности заготовки
  • Поправочный коэффициент Киv зависимости скорости резания от материала режущей части инструмента
  • Значения коэффициента Ср и показателей степени в формуле главной составляющей силы резания Рz при торцовом фрезеровании
  • Поправочный коэффициент Кmр зависимости силы резания от качества обрабатываемого материала для обработки стали и чугуна,
  • Поправочный коэффициент Кvр зависимости главной составляющей
  • Вспомогательное время на установку и снятие детали
  • Вспомогательное время на рабочий ход
  • Подготовительно-заключительное время
  • Вспомогательное время на измерения
  • Обработанной поверхности
  • Варианты заданий по расчёту режима резания при торцовом фрезеровании стали
  • Расчет режимов резания при фрезеровании Методические рекомендации

    Часть I - торцовое фрезерование

    В части I методических указаний даны общие теоретические сведения о фрезеровании, изложена последовательность операций по расчёту режима резания при торцовом фрезеровании на основе справочных данных. Методические указания могут быть использованы при выполнении домашнего задания, в курсовом и дипломном проектировании студентами факультетов ТС в АПК, ПРИМА и Инженерно-педагогического, а также при проведении практических и научно-исследовательских работ.

    Рис.9, табл.ХХ, список библ. - ХХ наименований.

    1.1. Элементы теории резания

    Фрезерование является одним из наиболее распространённых и высокопроизводительных способов механической обработки резанием. Обработка производится многолезвийным инструментом - фрезой.

    При фрезеровании главное движение резания D r - вращение инструмента, движение подачи D S - перемещение заготовки (Рис. 1.), на карусельно - фрезерных и барабанно-фрезерных станках движение подачи может осуществляться вращением заготовки вокруг оси вращающегося барабана или стола, в отдельных случаях движение подачи может осуществляться перемещением инструмента (копировальное фрезерование).

    Фрезерованием обрабатываются горизонтальные, вертикальные, наклонные плоскости, фасонные поверхности, уступы и пазы различного профиля. Особенностью процесса резания при фрезеровании является то, что зубья фрезы не находятся в контакте с обрабатываемой поверхностью всё время. Каждое лезвие фрезы последовательно вступает в процесс резания, изменяя толщину срезаемого слоя от наибольшей к наименьшей, или наоборот. Одновременно в процессе резания могут находиться несколько режущих кромок. Это вызывает ударные нагрузки, неравномерность протекания процесса, вибрации и повышенный износ инструмента, повышенные нагрузки на станок.

    При обработке цилиндрическими фрезами (режущие кромки расположены на цилиндрической поверхности) рассматривается два способа обработки в зависимости от направления движения подачи заготовки:

    Встречное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, противоположно направлению движения подачи;

    Попутное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, совпадает с направлением движения подачи.

    При встречном фрезеровании нагрузка на зуб возрастает от нуля до максимума, силы, действующие на заготовку, стремятся оторвать её от стола, а стол поднять. Это увеличивает зазоры в системе СПИД (станок - приспособление - инструмент - деталь), вызывает вибрации, ухудшает качество обработанной поверхности. Этот способ хорошо применим для обработки заготовок с коркой, производя резание из-под корки, отрывая её, тем самым значительно облегчая резание. Недостатком такого способа является большое скольжение лезвия по предварительно обработанной и наклёпанной поверхности. При наличии некоторого округления режущей кромки она не сразу вступает в процесс резания, а поначалу проскальзывает, вызывая большое трение и износ инструмента по задней поверхности. Чем меньше толщина срезаемого слоя, тем больше относительная величина проскальзывания, тем большая часть мощности резания расходуется на вредное трение.

    При попутном фрезеровании этого недостатка нет, но зуб начинает работу с наибольшей толщины срезаемого слоя, что вызывает большие ударные нагрузки, однако исключает начальное проскальзывание зуба, уменьшает износ фрезы и шероховатость поверхности. Силы, действующие на заготовку, прижимают её к столу, а стол - к направляющим станины, что уменьшает вибрации и повышает точность обработки.

    ВЫБОР РЕЖИМА РЕЗАНИЯ ПРИ ФРЕЗЕРОВАНИИ

    § 78. УСЛОВИЯ, ОПРЕДЕЛЯЮЩИЕ ВЫБОР РЕЖИМА РЕЗАНИЯ

    Понятие о наивыгоднейшем режиме резания

    Наивыгоднейшим следует считать такой режим резания при работе на фрезерном станке, при котором наиболее удачно сочетаются скорость резания, подача и глубина срезаемого слоя, обеспечивающие в данных конкретных условиях (т. е. с учетом наилучшего использования режущих свойств инструмента, скоростных и мощностных возможностей станка) наибольшую производительность труда и наименьшую стоимость операции при соблюдении заданных технических условий в отношении точности и чистоты обработки.
    Научно-исследовательским институтом труда Государственного комитета Совета Министров СССР по вопросам труда и заработной платы разработаны при участии крупнейших отечественных ученых с учетом практического применения в производственных условиях режимы резания при фрезеровании инструментами из быстрорежущей стали и твердых сплавов. Они могут служить в качестве исходных данных при назначении скоростей резания и минутных подач.
    Эти нормативы имеются на каждом заводе и служат руководящим материалом для разработки технологического процесса и составления операционных карт, подобно приведенной на стр. 204-205. Однако приведенные в них скорости резания и минутные подачи не являются предельными и в ряде случаев могут перекрываться фрезеровщиками, если применять более производительные инструменты или работать на более мощных и жестких станках.
    С другой стороны, молодые, т. е. начинающие и не имеющие достаточного опыта, фрезеровщики не всегда могут работать на предельных режимах резания, поэтому для них предусмотрены в «Справочнике молодого фрезеровщика» менее жесткие режимы резания, начиная с которых, необходимо, по мере повышения квалификации, переходить к более жестким.
    Чтобы самому внедрять новые режимы, надо знать порядок и последовательность установления режимов фрезерования.

    Материал режущей части фрезы

    Решающим фактором, определяющим уровень режима резания, является материал режущей части фрезы. Как упоминалось выше, применение фрез с пластинками из твердого сплава позволяет работать на больших скоростях резания и больших подачах по сравнению с фрезами из быстрорежущей стали; как увидим далее, твердосплавные фрезы дают возможность повышения производительности в два-три раза против быстрорежущих. Поэтому твердосплавные фрезы целесообразно применять почти на всех видах фрезерной обработки; препятствием к их применению может явиться недостаточная мощность оборудования или специфические свойства материала обрабатываемой заготовки.
    Однако в ряде случаев применение для режущей части фрез углеродистых, легированных инструментальных и быстрорежущих сталей является рациональным, особенно когда чистота обработанной поверхности и точность полученной поверхности детали имеют большее значение, чем скорость выполнения работы.

    Геометрические параметры режущей части

    Не менее важным фактором, влияющим на выбор режимов резания, являются геометрические параметры режущей части фрезы (режущих углов, размеров и формы зуба), что часто называют геометрией фрезы . Ранее, в § 7, рассмотрены значение и влияние каждого из элементов геометрии зуба фрезы в процессе резания; здесь же рассмотрим рекомендуемые геометрические параметры режущей части фрез из быстрорежущей стали Р18 и с пластинками твердого сплава.
    В табл. 35 и 36 приведены рекомендуемые значения геометрических параметров цилиндрических, торцовых, дисковых, отрезных, концевых и фасонных фрез из быстрорежущей стали.

    Таблица 35

    Геометрические параметры режущей части фрез из быстрорежущей стали Р18

    I. Передние углы


    II. Задние углы


    III. Углы в плане и переходной кромки


    Примечания. 1. У фрез цилиндрических с углом наклона зубьев свыше 30° передний угол γ при обработке стали σ b меньше 60 кГ/мм 2 берется равным 15°.
    2. У фасонных фрез с передним углом у больше 0° необходима коррекция контура при обработке точных профилей.
    3. При обработке жаропрочных сталей торцовыми фрезами брать верхние значения передних углов, концевыми и цилиндрическими - нижние и средние.
    4. На задней поверхности фрез при заточке оставлять круглошлифованную ленточку шириной не более 0,1 мм . Зубья у фрез шлицевых (прорезных) и отрезных (круглых пил) затачиваются без оставления ленточки.


    В табл. 37 - 40 приведены рекомендуемые значения передних и задних углов, главного, вспомогательного и переходного углов в плане, углов наклона режущей кромки и винтовых канавок, радиуса при вершине торцовых, цилиндрических, концевых и дисковых фрез с твердосплавными пластинами.
    Фрезы, применяемые для обработки большинства заготовок, обычно поставляются инструментальными заводами с геометрическими параметрами, соответствующими ГОСТ, и фрезеровщику в отличие от токаря и строгальщика, почти невозможно изменять путем заточки режущие углы фрез. Вследствие этого приведенные в табл. 35 - 40 геометрические параметры режущей части фрез помогут фрезеровщику правильно выбрать соответствующую данной обработке фрезу из имеющихся в инсрументальной кладовой учебного и производственного цеха стандартных фрез. Однако основное назначение этих таблиц заключается в рекомендациях в том случае, если фрезеровщик захочет сам заказать инструментальному отделу стандартные или специальные фрезы с оптимальными для данной обработки геометрическими параметрами.

    Таблица 37

    Геометрические параметры режущей части торцовых фрез с пластинками из твердого сплава



    Примечание . Малые углы в плане φ = 15 - 30° следует применять, при обработке на жестких станках для черновых проходов с малыми глубинами резания или чистовых проходов с невысокими требованиями чистоты и точности к обработанной поверхности.

    Таблица 38

    Геометрические параметры режущей части цилиндрических фрез с винтовыми пластинками из твердого сплава


    Примечание . На задней поверхности зуба вдоль режущей кромки допускается ленточка шириной не более 0,1 мм .

    Таблица 39

    Геометрические параметры режущей части концевых фрез с пластинками из твердого сплава при обработке конструкционных углеродистых и легированных сталей



    * При малой жесткости системы станок - приспособление - инструмент - деталь и при больших сечениях стружки (В больше D ; t больше 0,5D ), а также при работе с низкими скоростями резания при недостаточном числе оборотов шпинделя (v меньше 100 м/мин ) передний угол γ назначается положительным + от 0 до +8°.
    ** Большие значения для мягких сталей, меньшие - для твердых сталей.

    Ширина и глубина фрезерования

    Ширина фрезерования задается в чертеже детали. В случае обработки нескольких заготовок, закрепленных параллельно в одном зажимном приспособлении, ширина фрезерования равна ширине всех заготовок. В случае обработки наборами фрез ширина фрезерования равна суммарной ширине всех сопряженных поверхностей.
    Глубина фрезерования (глубина резания, толщина срезаемого слоя) дается как расстояние между обрабатываемой и обработанной поверхностями. В целях сокращения времени на обработку рекомендуется выполнять фрезерование в один проход. При повышенных требованиях к точности и чистоте обработанной поверхности фрезерование ведется в два перехода - черновой и чистовой. В отдельных случаях, при снятии больших припусков или при фрезеровании на станках с недостаточной мощностью, возможна обработка в два черновых прохода.

    Таблица 40

    Геометрические параметры режущей части дисковых фрез с пластинками из твердого сплава



    При фрезеровании стальных поковок, стальных и чугунных отливок, покрытых окалиной, литейной коркой или загрязненных формовочным песком, глубина фрезерования должна быть больше толщины загрязненного слоя, чтобы зубья фрезы не оставляли на обработанной поверхности черновин, так как скольжение по корке отрицательно действует на фрезу, ускоряя износ режущей кромки.
    Для наиболее часто встречающихся случаев фрезерования рекомендуется черновую обработку производить по стали с глубиной резания 3-5 мм , а по стальному и чугунному литью - с глубиной резания 5-7 мм . Для чистового фрезерования берут глубину резания 0,5-1,0 мм .

    Диаметр фрезы

    Диаметр фрезы выбирают в основном в зависимости от ширины фрезерования В и глубины резания t . В табл. 41 приведены данные для выбора цилиндрических фрез, в табл. 42 - торцовых фрез и в табл. 43 - дисковых фрез.


    * Применять сборные составные фрезы по ГОСТ 1979-52.



    Рассмотрим влияние диаметра фрезы на производительность фрезерования.
    Диаметр цилиндрической фрезы влияет на толщину среза : чем больше диаметр фрезы D тем тоньше получается срез; при одной и той же подаче s зуб и глубине фрезерования t .
    На рис. 327 показан срез, получающийся при одинаковых глубине фрезерования t и подаче s зуб, но при разных диаметрах фрез. Срез, получающийся при большем диаметре фрезы (рис. 327, а), имеет меньшую толщину, чем срез при меньшем; диаметре фрезы (рис. 327, б).


    Так как удельное давление возрастает с уменьшением толщины срезаемого слоя а наиб (см. табл. 38), выгоднее работать с более толстыми срезами, т. е. при прочих равных условиях при меньшем диаметре фрезы.
    Диаметр фрезы влияет на величину пути , который должна пройти фреза для одного прохода.
    На рис. 328 показан путь, который должна пройти фреза при обработке детали длиной L ; на рис. 329 - путь, который должна пройти торцовая фреза при несимметричном фрезеровании заготовки длиной L ; на рис. 330 - путь, который должна пройти тортовая фреза при симметричном фрезеровании заготовки длиной L .

    Величина врезания l (путь врезания):
    при работе цилиндрическими, дисковыми, отрезными и фасонными фрезами зависит от диаметра фрезы D глубины фрезерования t и выражается формулой

    при работе торцовыми и концевыми фрезами при несимметричном фрезеровании зависит от диаметра фрезы D ширины фрезерования В и выражается формулой

    при работе торцовыми фрезами при симметричном фрезеровании зависит от диаметра фрезы D ширины фрезерования В и выражается формулой

    Величина перебега l 1 выбирается в зависимости от диаметра фрезы в пределах 2-5 мм .
    Следовательно, для уменьшения пути врезания и перебега фрезы, т. е. для сокращения холостого хода станка, целесообразно выбирать меньший диаметр фрезы.
    В конце книги в приложениях 2 и 3, даны таблицы значений пути врезания и перебега фрез.
    Диаметр фрезы влияет на величину крутящего момента : чем меньше диаметр фрезы, тем меньший крутящий момент надо сообщить шпинделю станка.
    Таким образом, выбор фрезы с меньшим диаметром является, казалось бы, более целесообразным. Однако с уменьшением диаметра фрезы приходится выбирать более тонкую, т. е. менее жесткую фрезерную оправку, поэтому приходится уменьшать нагрузку на оправку, т. е. уменьшать сечение срезаемого слоя.

    Подача

    Подача при черновой обработке зависит от обрабатываемого материала, материала режущей части фрезы, мощности привода станка, жесткости системы станок - приспособление - инструмент - деталь, размеров обработки и углов заточки фрезы.
    Подача при чистовой обработке зависит от класса чистоты поверхности, обозначенной на чертеже детали.
    Основной исходной величиной при выборе подачи для чернового фрезерования является подача s зуб.
    Для торцовых фрез на выбор подачи s зуб оказывает способ установки фрезы относительно заготовки, что обусловливает величину угла встречи зуба фрезы с заготовкой и толщину срезаемой стружки при входе и выходе зуба фрезы из контакта с заготовкой. Установлено, что для торцовой твердосплавной фрезы наиболее благоприятные условия врезания зуба в заготовку достигаются при расположении фрезы относительно заготовки, как на рис. 324, в, т. е. при смещении фрезы относительно заготовки на величину С = (0,03 - 0,05)D . Такое смещение оси фрезы дает возможность увеличить подачу на зуб против подачи при симметричном фрезеровании (рис. 324, а) чугуна и стали в два раза и более.
    В табл. 44 приводятся рекомендуемые подачи при черновом фрезеровании твердосплавными торцовыми фрезами для этих двух случаев.


    Примечания. 1. Приведенные значения черновых подач рассчитаны для работы стандартными фрезами. При работе нестандартными фрезами с увеличенным числом зубьев значения подач следует уменьшать на 15 - 25%.
    2. В первоначальный период работы фрезы до износа, равного 0,2-0,3 мм , чистота обработанной поверхности при чистовом фрезеровании снижается примерно на один класс.


    Примечание. Большие подачи брать для меньших глубины резания и ширины обработки, меньшие - для больших глубины и ширины обработки.


    Примечание. Подачи даны для жесткой системы станок - приспособление - инструмент - деталь.

    При торцовом фрезеровании твердосплавными фрезами на величину подачи влияет также главный угол в плане φ. Подачи, приведенные в табл. 44, рассчитаны на фрезы с φ = 60 - 45°. Уменьшение угла в плане φ до 30° позволяет увеличить подачу в 1,5 раза, а увеличение угла φ до 90° требует снижения подачи на 30%.
    Подачи при чистовой обработке твердосплавными фрезами, приведенные в табл. 44, даются на один оборот фрезы, так как подачи на один зуб получаются слишком малыми. Подачи даются в зависимости от класса чистоты обработанной поверхности по ГОСТ 2789-59.
    В табл. 45 приведены рекомендуемые подачи на один зуб фрезы при черновом фрезеровании плоскостей цилиндрическими, торцовыми и дисковыми трехсторонними фрезами из быстрорежущей стали Р18.
    В табл. 46 приведены подачи при чистовом фрезеровании плоскостей цилиндрическими фрезами из быстрорежущей стали Р18, а в табл. 47 - при чистовом фрезеровании плоскостей торцовыми и дисковыми трехсторонними фрезами из быстрорежущей стали Р18. Ввиду малых значений подач на один зуб фрезы, получающихся при чистовом фрезеровании, в табл. 46 и 47 приводятся подачи на один оборот фрезы.
    Следует иметь в виду, что работа с подачами, указанными в табл. 44-47, ставит непременным условием наличие минимального биения зубьев фрезы (см. табл. 50).


    Примечание. Подачи даны для жесткой системы станок - приспособление- инструмент - деталь при обработке фрезами со вспомогательным углом в плане φ 1 = 2°; для фрез с φ 1 = 0 подачи можно увеличить на 50 - 80%.

    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: